Reduction and lifting problem for differential forms on Berkovich curves

نویسندگان

چکیده

Given a complete real-valued field k of residue characteristic zero, we study properties differential form ? on smooth proper k-analytic curve X. In particular, associate to (X,?) natural tropical reduction datum combining data and algebra-geometric over the k˜. We show that this satisfies compatibility condition, prove lifting theorem asserting any compatible lifts an actual pair (X,?). obtain short proof main result [2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Group actions on curves and the lifting problem

1.1 The lifting problem The problem we are concerned with in our lectures and which we shall refer to as the lifting problem was originally formulated by Frans Oort in [17]. To state it, we fix an algebraically closed field κ of positive characteristic p. Let W (κ) be the ring of Witt vectors over κ. Throughout our notes, o will denote a finite local ring extension of W (κ) and k = Frac(o) the ...

متن کامل

Cohomology of regular differential forms for affine curves

Let C be a complex affine reduced curve, and denote by H1(C) its first truncated cohomology group, i.e. the quotient of all regular differential 1-forms by exact 1-forms. First we introduce a nonnegative invariant μ(C, x) that measures the complexity of the singularity of C at the point x, and we establish the following formula: dim H(C) = dim H1(C) + ∑

متن کامل

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

MPHS I: Differential modular forms,Elliptic curves and Ramanujan foliation

In this article we define the algebra of differential modular forms and we prove that it is generated by Eisenstein series of weight 2, 4 and 6. We define Hecke operators on them, find some analytic relations between these Eisenstein series and obtain them in a natural way as coefficients of a family of elliptic curves. Then we describe the relation between the dynamics of a foliation in C indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108208